k+1/k=1-(((k^2)-3k-4)/4k)

Simple and best practice solution for k+1/k=1-(((k^2)-3k-4)/4k) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k+1/k=1-(((k^2)-3k-4)/4k) equation:



k+1/k=1-(((k^2)-3k-4)/4k)
We move all terms to the left:
k+1/k-(1-(((k^2)-3k-4)/4k))=0
Domain of the equation: k!=0
k∈R
Domain of the equation: 4k))!=0
k!=0/1
k!=0
k∈R
We calculate fractions
k+4k/4k^2+(-(1-((k^2-3k-4)*k)/4k^2=0
We multiply all the terms by the denominator
k*4k^2+4k+(-(1-((k^2-3k-4)*k)=0
We calculate terms in parentheses: +(-(1-((k^2-3k-4)*k), so:
-(1-((k^2-3k-4)*k
We add all the numbers together, and all the variables
4k+k*4k^2+(-(1-((k^2-3k-4)*k)=0
Wy multiply elements
4k^3+4k+(-(1-((k^2-3k-4)*k)=0
We calculate terms in parentheses: +(-(1-((k^2-3k-4)*k), so:
-(1-((k^2-3k-4)*k
We do not support ekpression: k^3

See similar equations:

| 296=4(6q-4) | | 2/x+5=15 | | k+1/k=4k | | 10-2e=8 | | 34-(x-5)=0 | | 4k(k+1/k)=0 | | 5(3x+5/2)=4x+7 | | b²+2b=-20 | | P(x)=x^2-4x+3 | | 2p/3-p/6=7/3 | | |2x-10|=26 | | (n^2)-7n-8=0 | | -9-4a=-53 | | 5{2m-6)=12 | | -(k^2)-3k-8=0 | | 3(b+5)=6 | | P^2-p=1 | | 2t-+7=-1 | | 11+-24=a | | 1x+8/9x=12 | | 11-24=a | | 8q+5=9q | | x(×+3)=28 | | -20-6=a | | -20+-6=a | | 1/x2+5x+5=1 | | 4-1=a | | 4+-1=a | | -15+6=a | | 3+-3=a | | x=25.7+1.2 | | 1x+5-3x-7-5x=5 |

Equations solver categories